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ABSTRACT 
 
Neurogenesis in the vertebrate brain comprises many steps ranging from the proliferation of 
progenitors to the differentiation and maturation of neurons. Although these processes are highly 
regulated, the landscape of transcriptional changes and progenitor identities underlying brain 
development are poorly characterized. Here, we describe the first developmental single-cell RNA-
seq catalog of more than 200,000 zebrafish brain cells encompassing 12 stages from 12 hours 
post-fertilization to 15 days post-fertilization. We characterize known and novel gene markers for 
more than 800 clusters across these timepoints. Our results capture the temporal dynamics of 
multiple neurogenic waves from embryo to larva that expand neuronal diversity from ~20 cell 
types at 12 hpf to ~100 cell types at 15 dpf. We find that most embryonic neural progenitor states 
are transient and transcriptionally distinct from long-lasting neural progenitors of post-embryonic 
stages. Furthermore, we reconstruct cell specification trajectories for the retina and 
hypothalamus, and identify gene expression cascades and novel markers. Our analysis reveal 
that late-stage retinal neural progenitors transcriptionally overlap cell states observed in the 
embryo, while hypothalamic neural progenitors become progressively distinct with developmental 
time. These data provide the first comprehensive single-cell transcriptomic time course for 
vertebrate brain development and suggest distinct neurogenic regulatory paradigms between 
different stages and tissues.  
 
 
INTRODUCTION 
 
The vertebrate brain develops from a limited pool of embryonic neural progenitor cells that cycle 
through rounds of proliferation, diversification, and terminal differentiation into an extensive 
catalogue of distinct neuronal and glial cell types. A central goal in developmental neurobiology 
is to investigate how neuronal complexity arises through molecular specification and commitment 
by studying the origins and fates of cells during development. Critical insights into these 
processes have been gained via classic approaches using genetic markers, perturbations and 
fate mapping 1-7. However, several outstanding questions pertaining to brain organogenesis 
remain. For example, it is poorly understood how embryonic neural progenitors are molecularly 
related to post-embryonic neural progenitors. Do embryonic cell states exist over long periods of 
time or are they transient? What are the transcriptional differences between these progenitor 
states and do they vary across different regions of the brain? Furthermore, transcriptional 
programs that are activated and/or suppressed as neural progenitors become fate-restricted and 
terminally divide are largely unknown. 
 
To complement previous studies and address the above questions, we set out to obtain global 
views of neurogenesis, cell type heterogeneity, cell specification trajectories and cell lineage 
relationships in a developing vertebrate brain. We describe the first extensive characterization of 
a developmental compendium of the zebrafish brain obtained by profiling cells with single-cell 
RNA-seq (scRNA-seq) across 12 stages ranging from 12 hours post fertilization (hpf) to 15 days 
post fertilization (dpf). We also improved lineage barcode capture of our previously described 
scGESTALT CRISPR lineage recorder 8. The transgenic line and accompanying brain lineage 
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trees for 15 dpf larvae complement the transcriptional atlas and are available for use and 
exploration by the community. Using the cell type atlas, we describe the expansion of neuronal 
diversity from 12 hpf to 15 dpf based on known and novel marker genes, loss of transient 
embryonic neural progenitor states, and the long-term maintenance of distinct larval neural 
progenitor states. Furthermore, we reconstruct cell specification trajectories of the zebrafish retina 
and hypothalamus revealing gene expression cascades that underlie development of profiled cell 
types in these tissues. Finally, we find that neural progenitor differentiation paradigms are distinct 
between the retina and hypothalamus, thus highlighting how neuronal complexity in various 
regions can be generated using different strategies. Collectively, our data reveal molecular and 
cellular changes that accompany brain development at an unprecedented scale and resolution, 
and lay the foundation for detailed analyses of how neuronal diversity emerges in vertebrates. 
 
 
RESULTS 
 
Building a developmental atlas of the zebrafish brain with single-cell transcriptomics 
  
To determine the spectrum of heterogeneous cell states and cell types during brain development, 
we profiled 223,037 cells across 12 stages of zebrafish embryonic and larval growth using the 
10X Chromium scRNA-seq platform. Samples spanned from 12 hpf (shortly after gastrulation), 
when the embryo is undergoing early developmental patterning, to 15 dpf when larvae are mature, 
exhibit complex behaviors, and are expected to exhibit substantial cell type diversity (Figure 1a). 
To enrich for brain cell types, we dissected the heads of animals from 12 hpf to 3 dpf, and the 
brains and eyes from 5 dpf to 15 dpf (Figure 1b). A t-distributed Stochastic Neighbor Embedding 
(t-SNE) visualization of the full dataset generated a developmental atlas of transcriptionally 
distinct cell populations in the head and brain of zebrafish (Figure 1c). Plotting expression of 
known cell type markers identified clusters corresponding to neural progenitors (sox19a), neurons 
(elavl3, gad2, slc17a6b), eye cells (foxg1b, lim2.4, pmela, ca14, gnat1, opn1mw1), radial glia 
(mfge8a, s100b), neural crest (sox10), oligodendrocytes (mbpa), blood cells (cahz, etv2, cd74a), 
cartilage (matn4, col9a2), pharyngeal arches (pmp22a, prrx1b, barx1), sensory placodes (dlx3b, 
six1b), and epidermal cells (epcam, cldni), among others (Figure 1d). The atlas also revealed 
groups of embryonic clusters that are transcriptionally distinct from larval clusters (e.g. placodes, 
neural progenitors; see below), suggesting that many embryonic cell states/types are transient.  
 
To obtain higher cell type resolution, data from each stage was analyzed individually using 
Louvain clustering (Figure 1e and Sup Fig.1). This identified a total of 815 cell clusters across all 
12 timepoints (Sup Table). To classify each cluster, we compared enriched gene markers with 
existing gene expression annotations in the ZFIN database and literature, as described previously 
8. As expected, cell type complexity increases with developmental time.  
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Figure 1. Developmental compendium of zebrafish brain cell types 
a. Schematic of the developmental stages profiled. Red hatched line represents head regions that were selected 
for enrichment of brain cells in early development. Samples from 5 to 15 dpf were dissected to obtain brain and 
eye specifically.  b. Schematic of scRNA-seq using 10X Genomics platform. c. tSNE plot of the full dataset 
(223,037 cells). Cells are color coded by stage. d. Gene expression of cell type markers. Cells are colored by 
mean gene expression level. e. Cell type heterogeneity within each stage. Clusters at each stage were assigned 
to a region or tissue type based on known markers and color coded to reflect their classification. 
tSNE implementations: Barnes-Hut (e 12h to 3d), Fourier transform (c, d, e [5d and 15d] 
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To enable direct comparison of cell types across our time course, we subsetted the 12 hpf dataset 
to only comprise neural populations and blood cells. This resulted in an initial set of 21 clusters at 
12 hpf (Figure 2a) that diversified into 98 clusters by 15 dpf (Figure 2c). Notably, most clusters 
could be uniquely identified using a minimal group of 2-3 enriched gene markers (Figure 2b, 2d). 
For example, at 12 hpf, the optic vesicle is identified by expression of rx2 and rx3; hindbrain 
rhombomeres 5/6 by hoxb3a and eng2b; and ventral diencephalon by nkx2.4a and dbx1a. 
Similarly, at 15 dpf, the cerebellar granule cells are marked by expression of oprd1b and zic2a; 
optic tectum by pax7a and tal1; and a new retinal cell type by kidins220a, foxg1b (exclusively 
detected in retinal cells) and tbx3a. We did not find unique gene combinations for cycling 
progenitors, committed progenitors and newly born neurons, as many of these subtypes had 
similar expression patterns of generic neuronal or progenitor marker genes, such as elavl3 and 
tubb5 in neurons, and rpl5a and npm1a in progenitors (Figure 2d, grey box).  
 
At 12 hpf, the early demarcation of multiple brain regions is already apparent and by 15 dpf these 
regions expand and diversify further. For example, the optic vesicle at 12 hpf is defined by one 
cluster and is the origin of 18 retinal neuron clusters and the retinal pigment epithelium at 15 dpf. 
Similarly, a single cluster of ventral diencephalon cells (expressing shha, nkx2.4a, nkx2.1, rx3) at 
12 hpf develops into 7 major hypothalamus cell types at 15 dpf. An exception to this diversification 
is the loss of rhombomeres (r1-r7) in the hindbrain 9.  
 
To derive lineage relationships of cell types identified in our brain development atlas, we 
performed lineage recording experiments with scGESTALT, which enables simultaneous cell type 
and cell lineage identification by combining scRNA-seq with CRISPR-Cas9 barcode editing 8,10. 
We optimized the lineage recording cassette to enable higher recovery of barcodes (see 
Methods). With this improved system, we barcoded early embryonic lineage relationships by 
injecting Cas9 and target guide RNAs into single-cell embryos (Sup. Fig 2a; see Methods). We 
recovered high quality barcodes from 5,794 cells total (recovery rate 30-75% compared to 6-28% 
in previous scGESTALT version 8) from four 15 dpf larval brains. Edited barcodes showed no 
overlap between animals, displayed a diverse spectrum of repair products that spanned single 
and multiple sites, and were of varying clone sizes (Sup Fig. 2). Using the recovered barcodes 
and associated transcriptomes, we reconstructed lineage trees of 15 dpf zebrafish representing 
cell type relationships in early brain development (Sup Fig. 3-4). As observed previously 8, cells 
sharing identical barcodes were generally locally enriched within compartments of the brain and 
eye (Sup Fig.5), agreeing with classic fate mapping experiments 4. Furthermore, these barcodes 
were distinct from those marking cell types of non-neural origins (e.g. blood, cornea, immune, 
etc.). These lineage trees accompany our transcriptional cell type atlas, and are available to 
explore at https://scgestalt.mckennalab.org/.    
 
In summary, we generated the first developmental zebrafish brain cell type atlas across 12 stages 
spanning early and late brain organogenesis. Next, we mined our transcriptional atlas further and 
investigated global hierarchies and regulatory strategies in neural development and their 
associations with cell fate decisions. 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. . https://doi.org/10.1101/839860doi: bioRxiv preprint 

https://doi.org/10.1101/839860


 
Figure 2. Cell type diversification from 12 hpf to 15 dpf 
a. tSNE plot of 12 hpf dataset. Only clusters corresponding to neural and blood cell types are shown. Inferred 
identities of each cluster are described. b. Dot plot of gene expression pattern of select marker genes (columns) 
for each cluster (row).  Dot size indicates the percentage of cells expressing the marker; color represents the 
average scaled expression level. c. tSNE plot of 15 dpf dataset. Inferred identities of each cluster are described. 
d. Dot plot of gene expression patterns of select marker genes for each cluster. Layout is same as panel b. Grey 
box represents generic neuronal and progenitor genes. tSNE implementations: Barnes-Hut (a), Fourier transform 
(c) 
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Neurogenic waves during brain development 
 
During development, cell composition shifts from predominantly progenitor populations to more 
differentiated cell types 11. To better characterize how differentiation varies during neuronal 
development, we first asked if our dataset captures the two neurogenic waves before and after 2 
dpf defined through histological analyses 12-14. At 12 hpf (early-stage primary neurogenesis), the 
brain is enriched in sox19a expressing progenitors, while neuronal differentiation (marked by 
elavl3 expression) is robustly detected in only three small populations: olfactory placode, 
trigeminal placode and telencephalon (Figure 3a). With increasing developmental time, we 
observe a progressive decrease in sox19a+ cells with a concomitant increase in elavl3+ neurons. 
Notably, during late embryogenesis, neuronal populations expand substantially from 12 elavl3-
enriched clusters at 20-24 hpf to 25 clusters at 36 hpf. This burst coincides with the presumed 
timing of late-stage primary neurogenesis in zebrafish 12. Furthermore, clusters of excitatory 
(slc17a6a+, slc17a6b+) and inhibitory (gad1b+, gad2+) neurons are detected by 20 hpf, and are 
enriched in neuronal markers (e.g. ywhag2, gap43, snap25a, scg2b, elavl4) characteristic of 
nascent neurons (Sup Fig. 6, Sup Table). By 5 dpf a second large expansion of neuronal 
populations, corresponding to the secondary neurogenic wave 12 occurs. This timepoint 
comprises cell types identified as early as 36 hpf, as well as subtypes only observed during the 
second wave, such as nrgnb+ prkcda+ neurons in the forebrain, and photoreceptor cells, cone 
bipolar cells and the newly identified kidins220a+ neuron subtype in the retina (49 neuronal 
subtypes at 5 dpf vs 25 subtypes at 36 hpf). Collectively, our dataset captures both waves of 
neurogenesis and reveals the temporal diversification of neurons in multiple brain structures. 
 
Dampening of spatial and developmental signatures during embryonic to larval neural 
progenitor transition 
 
We next analyzed our dataset to determine how cell states change during the transition from the 
embryonic to post-embryonic brain. The zebrafish brain undergoes lifetime constitutive 
neurogenesis due to the persistence of neural progenitor pools distributed along the brain’s axis 
11. However, the embryonic origins and transcriptional programs that underlie their development 
are poorly understood. Furthermore, how the molecular identities of embryonic and post-
embryonic neural progenitor cell states compare has not been well characterized. To address 
these questions, we asked how neural progenitor gene expression signatures globally change 
from embryo to larva. We defined early embryonic progenitors as brain neural cell types from 12 
hpf to 18 hpf, and defined larval progenitors as brain neural progenitors from 5 dpf to 15 dpf 
(Figure 3b, 3c, Sup Fig.7). For both groups, we considered neural progenitors as cells that are 
non-differentiated precursors that may or may not be proliferating, depending on the expression 
of cell cycle markers (see below). 
 
Embryonic neural progenitor cells separated into 3 major clusters (Figure 3b).  We asked what is 
the greatest source of variation within these populations, and found that the top 3 principal 
components comprise genes implicated in spatial and developmental patterning 7,9,15,16. Cells 
exhibit characteristic anteroposterior and dorsoventral axial signatures (Figure 3d). For example, 
the telencephalon (anterior forebrain) is marked by foxg1a and emx3a expression, the midbrain 
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by pax2a and eng2a, and the hindbrain is segmented into rhombomeres marked by distinct 
combinatorial patterns of egr2b and hox gene expression. Furthermore, all cells are in a highly 
proliferative state with strong expression of cell cycle genes such as pcna, mki67 and cdca7a. 
Collectively, the expression signatures are reflective of a developmental state during which the 
embryo is orchestrating a rapid expansion of neural progenitor populations concurrent with their 
acquisition of positional information and overt absence of differentiation 11,17. In contrast, larval 
neural progenitors comprised two major groups: proliferating (expressing cell cycle genes pcna 
and top2a) and non-proliferating (depleted expression of cell cycle markers) progenitors (Figure 
3e). Indeed, the top 3 principal components in the larval progenitors comprise genes that mark 
stem cells (PC1, PC3) and differentiation (PC2). The non-proliferating group is subdivided into 
radial glia (stem cells) and her2+ neural progenitors expressing proneural genes insm1b and 
scrt2. The proliferating group is subdivided into her2+ and scrt2- neural progenitor cells, her2- 
progenitors, her2+ and neurod1+ progenitor cells, and upper rhombic lip progenitors (localized to 
cerebellum) expressing atoh1c and oprd1b.  
 
Strikingly, most larval progenitors are characterized by a reduced spatial signature (except for the 
cerebellar upper rhombic lip pool), such that cells are less enriched in region-specific transcription 
factors relative to embryonic progenitors (Figure 3e). For example, radial glia exist in multiple 
pools along the brain’s axis 18, however, they form a single cluster in our dataset (marked by 
expression of fabp7a, cx43, s100b and aqp1a.1), suggesting they are largely transcriptionally 
similar. Although some expression of region-specific transcription factors is detected in larval 
progenitor clusters, these signatures are not sufficiently strong to resolve clusters as they were 
during embryonic stages (Figure 3d, 3e). To explore the apparent dearth of spatial signatures 
further, we calculated pairwise correlation scores for 79 transcription factors and signaling 
proteins with known spatial expression patterns in the forebrain and midbrain based on 
histological analysis (ZFIN). These genes show stronger correlations in embryonic progenitors 
than in larval progenitors (Sup Fig. 8a). Since spatial signatures are encoded by a combinatorial 
code of genes with overlapping expression patterns, we asked whether the same subsets of 
genes co-vary with each of the 79 spatial markers in embryonic and larval neural progenitors, and 
found low overlap across both stages (4/79 genes had 40% overlap in their top 20 co-varying 
genes, 17/79 genes had 30% overlap, and 58/79 had <30% overlap). Additionally, when we 
searched for genes that strongly co-varied with these 79 spatial markers (Pearson correlation 
>0.4), we found 41 genes during embryonic stages, but only 1 gene during larval stages (Sup Fig. 
8b). Thus, the overall spatial code between embryonic and larval progenitors are distinct, and the 
embryonic spatial code involves a larger collection of genes. Notably, the signatures of larval 
progenitors resemble juvenile neural progenitor pools 8, indicating developmental switches in 
neural progenitor identities from embryo to larva that are maintained to at least juvenile stages. 
Thus, embryonic states that existed in early progenitors are largely altered in late-stage 
progenitors; while spatial patterning signals are the greatest source of variation between 
embryonic neural progenitors, these signals are dampened in long-term neural progenitors. 
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Figure 3. Temporal diversification of neurons and progenitors 
a. tSNE plots highlight cells expressing sox19a (neural progenitor marker, black) or elavl3 (neuronal marker, red) 
across various developmental stages. b. tSNE plots of cells classified as embryonic (center panel) and larval 
(right panel) progenitors. Cells were subsetted from the whole dataset atlas (hatched lines, left panel). Cells are 
color coded by stage. c. tSNE plot of embryonic and larval progenitors. All progenitor cells were analyzed together 
after subsetting from the whole dataset. Developmental time is a strong source of variation, especially for 
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embryonic progenitors. Larval progenitor clusters contain cells from all stages. d. and e. Heatmaps of select gene 
expression in early embryonic (d) and late larval (e) brain neural progenitors. Top panel, genes enriched in 
embryonic progenitors. Bottom panel, genes enriched in larval progenitors. Embryonic progenitors have a strong 
spatial signature (forebrain, midbrain, hindbrain) and are depleted in genes that distinguish larval progenitor 
subtypes (d). Larval progenitors segregate into non-proliferative and proliferative groups that can be resolved 
into additional subtypes characterized by expression of various gene combinations (e). TF, transcription factor 
tSNE implementations: Barnes-Hut (a [12h to 2d], c), Fourier transform (a [5d], b)   
 
Cell specification trajectories in the retina 
 
With the exception of a few model systems 19-24, little is known about the gene expression 
cascades that accompany the development of progenitors into terminally differentiated neurons. 
To address how different neuronal populations become molecularly specialized, we traced their 
gene expression trajectories from 12 hpf to 15 dpf. We first tested our approach on the subsetted 
retina dataset in which cell types expand from a single cluster at 12 hpf to 18 clusters at 15 dpf 
(Figure 2). UMAP embedding of the subsetted dataset revealed progressive paths from the 
embryonic state to defined cell types at 15 dpf, with the exception of one outlier cluster expressing 
kidins220a, whose progenitor state may not have been captured in our timepoints and was 
excluded from further analysis (Figure 4a, Sup Fig.9). Although UMAP represents continuity in 
the data, it does not order individual cells according to their relative developmental time (i.e. 
pseudotime). Therefore, we also used URD 25 to construct a branching specification tree that 
represents the developmental trajectories in the retina at a higher resolution (Figure 4b, Sup 
Fig.10, 11). Many of the major branching features agreed with the UMAP representation. For 
example, the trajectories revealed the early segregation of RPE, shared branching of 
photoreceptor cells, a path towards multiple cone bipolar cell subtypes, and common branchpoint 
between amacrine and retinal ganglion cells (RGC).  
 
Plotting gene expression of known early regulators of eye development and terminal cell type 
markers on the URD tree supported the inferred specification branches (Fig. 4c, Sup Fig.11). For 
example, pax6a was most enriched in the amacrine and RGC branches, vsx1 marked cone 
bipolar cells with fezf2 marking one specific subtype. Notably, our analysis also revealed 
previously unknown markers and characteristics of horizontal and amacrine cells. Zebrafish 
horizontal cells are GABAergic (gad2+, gad1b+), but unlike mammals where these cells do not 
express GABA membrane uptake transporters 26, zebrafish cells express slc6a1l (likely a 
duplication of slc6a1 involved in GABA uptake from the synaptic cleft) suggesting that they may 
be capable of uptake. Additionally, whereas slc32a1 GABA transporter is expressed in mouse 
horizontal and amacrine cells 27, we observed restriction of slc32a1 to amacrine cells and slc6a1l 
to horizontal cells. Finally, we detected several novel horizontal cells markers such as ompa, 
rem1, and prkacaa.   
 
To discover the gene expression trajectories from precursors to different retinal cell types, we 
used differential gene expression approaches that characterize pseudotime-ordered molecular 
trajectories. This analysis revealed known and novel regulatory steps Fig. 4d, Sup Fig.12). For 
example, RGC specification trajectories confirmed several known differentiation regulators 
including sox11a, sox11b, sox6, irx4a, and pou4f2 28. Similarly, known regulators of photoreceptor 
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differentiation, such as isl2a 29, prdm1a 30, otx5 31, and crx 32 are expressed early in our 
photoreceptor trajectories, while known regulators of cone versus rod fate, such as six7 33, nr2f1b 
34, and nr2e3 35 are expressed as those trajectories diverge. Furthermore, our analysis revealed 
novel transcription factors within the gene expression cascades. For example, we detected 
runx1t1, foxp1b, mef2aa in the RGC pathway; tfap2a in horizontal cell trajectory; and tbx3a and 
tbx2a in amacrine cell branches. Interestingly, among signaling pathways, we found that both 
apelin receptors (aplnra, aplnrb) are expressed in photoreceptor progenitors, while their ligand 
(apln) is expressed in differentiating cones; this suggests a potential cell autonomous role for 
apelin signaling in photoreceptor cells in addition to its role in preventing photoreceptor 
degeneration via vascular remodeling 36.  
 
A surprising result from this analysis was that Muller glia arise much earlier in zebrafish than 
expected based on studies in mouse, where these cells are the last to arise 19,37. We found a 
cluster of cells as early as 20 hpf (cluster 50) that expresses gene markers (e.g. cahz, rlbp1a) 
that are shared with the Muller glia cluster (cluster 33) at 15 dpf (Sup Table). Similarly, in our 
transcriptional trajectories (Fig. 4b), the Muller glia expression program is the earliest non-
epithelial retinal program to diverge, commencing with the expression of several her-family 
transcription factors (her4, her12, and her15), then proceeding through a cascade of intermediate 
overlapping expression states such as onset of fabp7a, s100a10b and later connexin genes that 
are characteristic of Muller glia fate (Sup Fig.12). This suggests that cells early in development 
transition from a naive progenitor state to a Muller glia-like transcriptional state, and do so 
continually during larval development (cells from all timepoints can be found in the early part of 
the Muller glia branch).  
 
Cell specification trajectories in the hypothalamus 
 
To extend our analysis, we reconstructed specification trajectories and expression cascades for 
hypothalamic cell types, which expand from a single ventral diencephalon cluster at 12 hpf to 7 
clusters at 15 dpf (Fig.4e-g, Sup Fig. 13, 14). The earliest branchpoint denotes segregation of 
prdx1+ and prdx1- cells. Committed hypothalamic progenitors in the prdx1- trajectory give rise to 
neuronal precursors expressing proneural transcription factors such as ascl1a, scrt2, insm1a and 
elavl3 (early neuron fate marker) (Sup Fig. 13). Next, the specified cell types mature over time, 
and are characterized by expression of neuronal maturation markers such as tubb5, gap43, 
ywhag2, snap25a, scg2b and elavl4. The prdx1- group further diverges into two major groups: 
nrgna+ and nrgna- trajectories (Fig. 4e). The nrgna+ branch segregated into GABAergic tac1+, 
synpr- subtype and GABAergic tac1+, synpr+ positive subtype. The nrgna- branch subdivided 
into glutamatergic pdyn+ neurons and a GABAergic branch that further resolved to sst1.1+ and 
tph2+ neuron subtypes. We detected expression of known regulators of hypothalamus 
development in the early branches such as shha, rx3, nkx2.4b. We also identified new candidate 
regulators in later branches including nrgna in the synpr+ and synpr- trajectories; and sox1a, 
sox1b and sox14 in the pdyn+ trajectory (Sup Fig. 14). 
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Figure 4. Cell specification trajectories in the retina and hypothalamus 
a. UMAP visualization of retinal cell types. Retinal cells (based on clustering analysis) from 12 hpf to 15 dpf were 
subsetted from the full dataset and analyzed together. Cells are color coded by stage. b. Cell specification tree 
of zebrafish retinal development. Trajectories were generated by URD and visualized as a branching tree. Cells 
are color coded by stage. 12 hpf cells were assigned as the root and 15 dpf differentiated cells were assigned as 
tips. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal ganglion cells; RPE, retinal pigment 
epithelium. c. Expression of select genes are shown on the retina specification tree. d. Heat maps of gene 
expression cascades of photoreceptor cell trajectories and retinal ganglion cell trajectories. Cells were selected 
based on high expression along trajectories leading to these cell types, compared to expression along opposing 
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branchpoints. Red, high expression. Yellow, low expression. e. Cell specification tree of zebrafish hypothalamus 
development. Trajectories were generated by URD and visualized as a branching tree. Cells are color coded by 
stage. 12 hpf cells were assigned as the root and 15 dpf differentiated cells were assigned as tips. f. Expression 
of select genes are shown on the hypothalamus specification tree. g. Heat map of gene expression cascade of 
nrgna+ cell trajectories. Red, high expression. Yellow, low expression  
 
Differences in progenitor specification strategies between retina and hypothalamus  
 
Continuous differentiation throughout the animal’s lifetime is a feature of zebrafish neurogenesis 
11. Pseudotime analysis represents cell trajectories in relative but not absolute time; it models 
transcriptional progression rather than time progression 38,39. When we mapped developmental 
stage onto the URD trees (Fig. 4b, 4e), we found that real-time progression and pseudotime 
progression generally agreed, with some notable exceptions. For example, retinal ganglion cells 
(RGCs) are one of the earliest retinal neurons to be born. Our clustering analysis identified an 
RGC cluster as early as 36 hpf (cluster 27); interestingly plotting cells from this cluster onto the 
URD tree revealed that many cells were assigned late pseudotime with other differentiating RGC 
cells from later stages (Fig. 5a), indicating that RGCs differentiate continuously across several 
developmental stages. Conversely, by plotting retinal progenitors (cluster 39) from 15 dpf, we 
observed that most cells are assigned to early branches of the tree with retinal progenitors from 
prior stages (Fig. 5b). We therefore compared late (15 dpf) and early (24-36 hpf) progenitors, and 
found that there were only 71 differentially expressed genes between them. The majority of these 
genes (56) increased in all cells of the retina between these stages, while a few (15) were only 
upregulated in 15 dpf retinal progenitors. This suggests that retinal progenitors at 15 dpf are 
transcriptionally similar to ones from earlier stages of development, and that in some tissues, 
progenitor cell states observed in the embryo persist later in development in some cases without 
maturing significantly.   
 
In the hypothalamus, we also observed pre-neuronal cell states occupied by cells from numerous 
stages; like the retina, these likely represent undifferentiated cells that continuously differentiate 
over time. For instance, we observe a hypothalamic GABAergic neuronal cluster (GABA dlx+) at 
15 dpf that is enriched in dlx and neuronal marker gene expression (e.g. elavl4, scg2b), but is not 
enriched in expression of mature terminal identity markers such as neuropeptides, signaling 
molecules and additional neurotransmitters (Fig. 5c). GABA dlx+ 15 dpf cells are found across 
multiple early and late branches on our tree (Fig. 5d). This suggests that this subtype represents 
a heterogenous cell state pool that persists to late larval stages, and from which subsets of cells 
further mature into at least 2 additional neuronal subtypes (sst1.1+ and tph2+); profiling cells 
beyond 15 dpf may reveal additional subtypes that derive from the GABA dlx+ pool.  
 
The data revealed distinct progenitor differentiation strategies between the retina and 
hypothalamus. In the retina, neural progenitor states observed in the embryo persist to late larval 
stages (Fig. 5e, Sup Fig. 15). In contrast, in the hypothalamus, the embryonic progenitor state 
(expressing rx3, shha) is not observed in late larval stages. Instead, non-terminally differentiated 
cells exist in precursor states that express a mix of progenitor (e.g. insm1a, her4.1) and early 
neuronal (e.g. tubb5, gap43) marker genes. Cells then differentiate into neurons and further 
mature by expressing terminal fate markers. These results indicate that different progenitor 
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specification and neurogenesis strategies are used between different brain regions during the 
establishment of neuronal diversity. 
 

 
Figure 5. Progenitor differentiation in retina and hypothalamus 
a. Retinal ganglion cells (RGC, red dots) from indicated stages and clusters are plotted onto the retina 
specification tree. A subset of 36 hpf RGCs are assigned late pseudotime and are found on the terminal RGC 
branch, likely representing terminally differentiated cells. b. Retinal progenitor cells (red dots) from indicated 
stages and clusters are plotted onto the retina specification tree. Subsets of long-term progenitor cells from 15 
dpf are assigned early pseudotime and are found on earlier branches on the tree that also contain embryonic 
progenitor cells from 24-36 hpf. c. Expression of select genes are shown on the hypothalamus specification tree. 
d. GABAergic dlx+ cells (red dots) from 15 dpf are plotted onto the hypothalamus specification tree. Cells are 
found across multiple early and late branches of the tree. e. Retinal and hypothalamus cells were divided into 
progenitor (purple), precursor (orange), and neuronal (blue) transcriptional states, as shown on the URD tree. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. . https://doi.org/10.1101/839860doi: bioRxiv preprint 

https://doi.org/10.1101/839860


The fraction of cells in each of these transcriptional states was then determined for three developmental periods 
(12–24 hpf, 36 hpf – 3 dpf, and 5–15 dpf). In the retina, cells can be found in a progenitor state (light purple) 
across all developmental stages. In the hypothalamus, the embryonic progenitor state is transient and gone by 
5 dpf, but cells can be found in a precursor state (orange) late in development. 
 
DISCUSSION 
 
As the brain develops, embryonic neural progenitor pools transition through many cellular states 
as they become more committed, diversify into longer lasting post-embryonic neural progenitor 
pools, and undergo terminal differentiation. Although many regulators and transcriptional changes 
of this process have been identified (e.g. using specific driver lines and in situ expression of select 
genes), the global transcriptional networks mediating the sequential activation and maturation of 
neurogenic programs from embryo to later stages are largely unknown. To address this question, 
we generated a zebrafish brain developmental atlas encompassing cells from 12 hpf to 15 dpf. 
These data currently constitute the most extensive resource to identify novel marker genes, 
compare cell types, and determine cell specification and differentiation trajectories during 
vertebrate brain development. 
 
Our data address how the transcriptional programs of neural progenitors vary and contribute to 
fate-restriction during development. Different models to explain these processes have been 
proposed. For example, neural progenitors of the medial and lateral mouse ganglionic eminence, 
which give rise to cortical interneurons, have been found to converge to a shared mitotic signature 
regardless of their region of origin, followed by expression of cardinal fate-specific transcription 
factors post-mitotically 40. In contrast, the spinal cord has dedicated pools of domain-specific 
neural progenitors that retain domain-specific signatures 21,41,42. Our results indicate that early 
embryonic neural progenitors in the brain are transcriptionally distinct from late larval neural 
progenitors. Gene expression profiles of neural progenitors switch from strong spatially 
segregated signatures in early embryos to proliferative and non-proliferative states in late larvae. 
We find that the greatest sources of variation between larval progenitors are stem cell versus non-
stem cell, and proliferative versus non-dividing marker genes. These cell state changes might 
reflect developmental shifts from a migratory program during gastrulation, where strong spatial 
patterning cues set up regional boundaries, to a maintenance program at late stages, where 
progenitors are geographically confined and express dampened regional restriction signatures. 
Although expression of some spatially-enriched transcription factors (e.g. pax6a, eng2a, nkx2.4a) 
and signaling proteins detected in embryonic progenitors is also detected in late long-term 
progenitors, the overall signatures are different: these factors co-vary with different sets of genes 
in larva relative to embryo. This raises the question of how neural progenitor pools remain fate 
restricted at later stages. It is conceivable that embryo and larva share a minimal core set of 
regionally-restricted transcription factors that ensure spatial restriction, despite differences in their 
relative expression levels and downstream targets. Spatial genes that are highly expressed in the 
embryo may be lowly expressed in the larva, and be sufficient to maintain regionally-restricted 
cell states. Such signatures would be difficult to analyze via scRNA-seq, which is biased towards 
recovering highly expressed genes. It is also possible that restrictions at the genomic level, such 
as chromatin accessibility, may ensure that cells maintain the signature of their spatial origin. Fate 
mapping experiments of early and late neural progenitors, future studies profiling open chromatin 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. . https://doi.org/10.1101/839860doi: bioRxiv preprint 

https://doi.org/10.1101/839860


states of neural progenitors during development, and profiling of cells with approaches that more 
effectively recover lowly expressed genes will provide further insight into these questions.  
 
Our reconstruction of cell specification trajectories for cell types in the retina and hypothalamus 
revealed several unexpected findings. First, we detected a Muller glia transcriptional program 
early in development, prior to any of the retinal neuron-specific programs. This observation differs 
from what has been described in mouse, where these cells are born last 19,37. Thus, our early 
detection of a Muller glia transcriptional state could suggest that Muller glia specification happens 
earlier in zebrafish than other organisms. Alternatively, cells could enter and exit this state during 
early development, and truly commit to Muller glia fate only later in development. Second, our 
data highlights how constitutive neurogenesis in the zebrafish brain results in transcriptional 
cascades that are repeatedly activated in cells during late stages of our time course. Late 
pseudotime branches in our cell specification trees contain cells from all larval stages (5 dpf to 15 
dpf) indicating that cells can be found in the same molecular state across large windows of time; 
thus, as several cell types acquire terminal fate identities during constitutive neurogenesis, it 
seems that they undergo the same sequence of molecular events regardless of their time of birth. 
These cascades can be further examined to determine candidate genes that may be critical for 
constitutive neurogenesis. Third, our results reveal that cells in the hypothalamus exist in long-
term neural precursor states that are distinct from cell states observed in the embryo. In contrast, 
retinal cells exist in long-term progenitor states that resemble states observed in the embryo. This 
raises the intriguing possibility that a subset of long-term retinal progenitors may be “frozen” in an 
embryonic phase that could possibly underlie multi-fate potential of these cells. In contrast, we 
hypothesize that hypothalamus precursors may reflect more committed states prior to neuronal 
differentiation into specific subtypes. Collectively, these findings highlight differences in cell 
differentiation strategies of progenitors across different regions of the brain, and underscore the 
power of investigating multiple specification trajectories simultaneously.  
 
Our analysis has laid the groundwork for characterizing transcriptional changes underlying 
development and diversification of a vertebrate brain. This gene expression atlas can be used to 
generate transgenic reporters using identified markers to select populations of interest and 
perform deeper analysis of cell type heterogeneity and differentiation 43. Furthermore, cell 
specification trajectories can be extended to include additional subregions of the brain to generate 
increasingly complex trees. Our dataset may be combined with early zebrafish embryogenesis 
scRNA-seq datasets 25,44 to trace trajectories from stages prior to gastrulation to late larval stages. 
Furthermore, cell specification trajectories and lineage trees can be compared vis-à-vis to 
investigate cell intrinsic effects on lineage decisions across many cell types and brain regions. 
Higher recovery of cells and enhanced time resolution in lineage trees are required for such direct 
comparisons. We optimized our scGESTALT recorder and library protocol to enable more dense 
reconstruction of lineage trees. Although our current implementation of this version was restricted 
to marking lineages in the early embryo, mostly prior to neuronal subtype segregations, it can be 
readily adapted for recording at later stages, for example by editing across multiple developmental 
windows 8. In the future, combination of single-cell transcriptomics, chromatin accessibility and 
lineage can be used to obtain an integrated understanding of the regulatory logic of how neuronal 
complexity is established.  
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METHODS 
 
Zebrafish husbandry 
All vertebrate animal work was performed at the facilities of Harvard University, Faculty of Arts & 
Sciences (HU/FAS). This study was approved by the Harvard University/Faculty of Arts & 
Sciences Standing Committee on the Use of Animals in Research & Teaching under Protocol No. 
25–08. The HU/FAS animal care and use program maintains full AAALAC accreditation, is 
assured with OLAW (A3593-01), and is currently registered with the USDA. 
 
Optimization of scGESTALT lineage cassette 
In our previous iteration of scGESTALT, the barcode capture rate by scRNA-seq was 6-28%. 8, 
thereby limiting the density of lineage tree reconstruction. To improve recovery we adapted a 
different transgenic cassette 45 for lineage recording. This cassette has the following modifications 
compared to our previous recorder: (1) The heat-shock inducible (hsp70l) promoter of the 
previous version is now replaced with a constitutive ubiquitous promoter (medaka beta-actin) to 
drive strong widespread expression of the barcode mRNA. Expression of the cassette was 
confirmed by fluorescence and the signal was more intense than that obtained with the heat shock 
promoter. Furthermore, this version eliminates the requirement to heat shock edited animals to 
express the barcode prior to scRNA-seq experiments. (2) We adapted the 3’ end of the DsRed 
open reading frame as a lineage recorder cassette with up to 8 sgRNA target sites positioned 
next to each other. This vastly improved expression of the construct compared to our previous 
version where the recording cassette was placed downstream of the DsRed open reading frame. 
(3) We made library preparation compatible with the 10X Genomics platform. 
 
To generate scGESTALT.2 barcode founder fish, one-cell embryos were injected with zebrafish 
codon optimized Tol2 mRNA and pT2Olactb:loxP-dsR2-loxP-EGFP vector (gift from Atsushi 
Kawakami 45 ). Potential founder fish were screened for widespread DsRed expression and grown 
to adulthood. Adult founder transgenic fish were identified by outcrossing to wild type fish and 
screening clutches of embryos for ubiquitous DsRed expression. Single copy scGESTALT.2 F1 
transgenics were identified using qPCR, as described previously 8,10,46.  
 
SgRNAs specific to sites 1-8 of the scGESTALT.2 array were generated by in vitro transcription 
as previously described 47. To initiate early barcode editing, single copy scGESTALT.2 F1 male 
transgenic adults were crossed to wildtype female adults and one-cell embryos were injected with 
1.5 nl of Cas9 protein (NEB) and sgRNAs 1-8 in salt solution (8 µM Cas9, 100 ng/µl pooled 
sgRNAs, 50 mM KCl, 3 mM MgCl2, 5 mM Tris HCl pH 8.0, 0.05% phenol red). Since editing results 
in loss of DsRed signal, transgenic animals were distinguished from wild type animals by 
amplifying the scGESTALT.2 barcode by PCR using genomic DNA from the tail fin at 15 dpf.  
 
Processing of samples for scRNA-seq time course 
Wild type embryos (12 hpf, 14 hpf, 16 hpf, 18 hpf,  20 hpf, 24 hpf, 36 hpf) and larvae (2 dpf, 3 dpf, 
5 dpf, 8 dpf) were used for scRNA-seq analysis. Samples for 15 dpf had a mix of wild type and 
barcode edited larvae. Embryos from 12 hpf to 36 hpf were first de-chorionated by incubating in 
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1 mg/ml pronase (Sigma-Aldrich) at 28 C for 6-7 min until chorions began to blister, and then 
washed three times in ~200 ml of zebrafish embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM 
CaCl2, 0.33 mM MgSO4, 0.1% methylene blue) in a glass beaker. Embryos were de-yolked using 
two pairs of watchmaker forceps, and the heads were chopped just anterior of the spinal cord. All 
processing steps were done using 100 mm Petri dishes coated with Sylgard 47. Samples from 2 
and 3 dpf were processed similarly to the embryos, except they were not de-chorionated as they 
had hatched out of the chorions. Larvae from 5 dpf to 15 dpf were dissected to remove whole 
brains and eyes as described previously 47. The following numbers of embryos and larvae were 
used for each timepoint: 12 hpf – ~20 embryos; 14 hpf – ~20 embryos; 16 hpf – ~18 embryos; 18 
hpf – ~18 embryos; 20 hpf – ~30 embryos; 24 hpf – ~30 embryos; 36 hpf – ~15 embryos; 2 dpf – 
~30 larvae;  3 dpf – ~30 larvae;  5 dpf – ~25 larvae; 8 dpf – ~ 25 larvae; 15 dpf – ~15 larvae. 
Tissues were dissociated into single cells using the Papin Dissociation Kit (Worthington) as 
described previously 47. Cells were resuspended in 50 µl to 150 µl of DPBS (Life Technologies) 
depending on anticipated amount of material, and counted using a hemocytometer. Samples were 
run on the 10X Genomics scRNA-seq platform according to the manufacturer’s instructions 
(Single Cell 3’ v2 kit). Libraries were processed according to the manufacturer’s instructions. 
Transcriptome libraries were sequenced using Nextera 75 cycle kits.  
 
scGESTALT.2 library prep 
To generate scGESTALT.2 libraries, lineage edited 15 dpf samples post cDNA amplification and 
prior to fragmentation were split into two halves. One half was processed for transcriptome 
libraries as instructed by the manufacturer. The other half was processed for lineage libraries as 
follows. To enrich for scGESTALT.2 lineage barcodes, 5 µl of the whole transcriptome cDNA was 
PCR amplified using Phusion polymerase (NEB) and 10XPCR1_F (CTACACGACGCTCTT 
CCGATCT) and GP10X2_R (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT GCTGCTTC 
ATCTACAAGGTGAAG). The reaction (98 C, 30 s; [98 C, 10 s; 67 C, 25 s; 72 C, 30 s] x 14-15 
cycles; 72 C, 2 min) was cleaned up with 0.6X AMPure beads and eluted in 20 ul EB buffer 
(Omega). Finally, adapters and sample indexes were incorporated in another PCR reaction using 
Phusion polymerase and 10XP5Part1long (AATGATACGGCGACCACCGA 
GATCTACACTCTTTCC CTACACGACGCTCTTCCGATCT) and 10XP7Part2Ax 
(CAAGCAGAAGACGGCATACGAGAT-xxxxxxxx-GTGACTGGAGTTCAGACGTGT), where x 
represents index bases. These include A1: GGTTTACT; A2: TTTCATGA; A3: CAGTACTG; A4: 
TATGATTC. Thus, up to 4 scGESTALT.2 samples were multiplexed in a sequencing run. 
Libraries were sequenced using MiSeq 300 cycle kits and 20% PhiX spike-in. Sequencing 
parameters: Read1 250 cycles, Read2 14 cycles, Index1 8 cycles, Index2 8 cycles. Standard 
sequencing primers were used.  
 
Bioinformatic processing of raw sequencing data and cell type clustering analysis 
Transcriptome sequencing data were processed using Cell Ranger 2.1.0 according to the 
manufacturer’s guidelines. scGESTALT.2 sequencing data were processed with a custom 
pipeline (https://github.com/aaronmck/SC_GESTALT) as previously described 8. The 
scGESTALT.2 barcode for each cell was matched to its corresponding cell type (tSNE cluster 
membership) assignment using the cell identifier introduced during transcriptome capture. 
Clustering analysis was performed using the Seurat v2.3.4 package 48 as described previously 8. 
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Full analysis scripts for cell type clustering, R objects and raw sequencing data will be uploaded 
to GitHub and NCBI GEO. 
 
Construction of lineage trees from GESTALT barcodes. 
All unique barcodes were then encoded into an event matrix and weights file, as described 
previously 8,10, and were processed using PHYLIP mix with Camin-Sokal maximum parsimony 49. 
Individual cells were then grafted onto the leaves matching their barcode sequence. After the 
subtrees were attached, we repeatedly eliminated unsupported internal branching by recursively 
pruning parent-child nodes that had identical barcodes. Cell annotations are then added to the 
corresponding leaves. The resulting tree was converted to a JSON object, annotated with cluster 
membership, and visualized with custom tools using the D3 software framework. 
 
Analyzing dampened spatial correlations in progenitors 
Progenitors were isolated by subsetting the data to include clusters expressing markers such as 
sox19a, her genes, pcna, mki67, fabp7a, gfap, id1, etc (Supplementary Table). Cells from 12 hpf 
– 18 hpf were considered embryonic progenitors and cells from 5 dpf – 15 dpf were considered 
larval progenitors. Variable genes were calculated for embryonic and larval progenitors separately 
using the FindVariableGenes function from Seurat v2.3.4 with parameters: x.low.cutoff = 0.015, 
x.high.cutoff = 3, y.cutoff = 0.7. Then, a list of 79 transcription factors with known spatial signatures 
was assembled by ***. Separately in the embryonic and larval progenitors, the pairwise Pearson 
correlation was calculated pairwise between all genes detected as variable in either the embryonic 
or larval progenitors. For several thresholds between 0.2–0.8, the number of genes that correlated 
more strongly than the threshold with any of the 79 spatial transcription factors (excluding self-
correlation) were determined. The strongest correlations were observed in the embryonic 
population, and for any threshold, more genes correlated with the spatial TFs in the embryonic 
progenitors than the larval progenitors. 
 
Construction and analysis of branching transcriptional trajectories using URD 
We built branching transcriptional trajectories from cells of the retina and hypothalamus to 
determine the molecular events that occur as cells diversify and differentiate in these tissues. 
First, cells from the retina and hypothalamus were isolated from each stage by determining 
clusters that belonged to these tissues by expression of marker genes. 
 
Determination of variable genes 
For URD trajectory analyses, a more restrictive set of variable genes was calculated on each 
subset of the data, as previously described 25,43 using the URD findVariableGenes function, with 
parameter diffCV.cutoff = 0.3. Briefly, a curve was fit that related each gene’s coefficient of 
variation to its mean expression level and represents the expected coefficient of variation resulting 
from technical noise, given a gene’s mean expression value; genes with much higher coefficients 
of variation likely encode biological variability and were used downstream. 
 
Removal of outliers 
Poorly connected outliers can disrupt diffusion map calculation and so were removed from the 
data. A k-nearest neighbor network was calculated between cells (Euclidean distance in variable 
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genes) with 100 nearest neighbors. Cells were then removed based on either unusually high 
distance to their nearest neighbor or unusually high distance to their 20th nearest neighbor, given 
their distance to their nearest neighbor using the URD function knnOutliers (retina: x.max = 40, 
slope.r = 1.05, int.r = 4.3, slope.b = 0.75, int.b = 11.5; hypothalamus: x.max = 40, slope.r = 1.1, 
int.r = 3, slope.b = 0.66, int.b = 11.5). 
 
Removal of doublets by NMF modules 
To remove putative cell doublets (i.e. where two cells are encapsulated into a single droplet and 
processed as one cell), which can disrupt trajectory relationships, we removed cells that 
expressed multiple NMF (non-negative matrix factorization) modules characteristic of different 
expression programs, as previously described 50. NMF modules were computed using a 
previously published NMF framework (https://github.com/YiqunW/NMF) 25. The analysis was 
performed on log-normalized read count data for a set of variable genes using the run_nmf.py 
script with the following parameters: -rep 5 -scl “false” -miter 10000 -perm True -run_perm True -
tol 1e-6 -a 2 -init “random” -analyze True. Several k parameters were evaluated for each tissue, 
and k was chosen to maximize the number of modules, while minimizing the proportion of modules 
defined primarily by a single gene (retina, k = 45; hypothalamus, k = ). Modules were used 
downstream that (a) had a ratio between their top-weighted and second-highest weighted gene 
of < 5, and (b) exhibited a strong cell-type signature, as determined by plotting on a UMAP 
representation and looking for spatial restriction. Pairs of modules that were appropriate for using 
to remove doublets (and that did not define transition states) were determined using the URD 
function NMFDoubletsDefineModules with parameters module.thresh.high = 0.4, and 
module.thresh.low = 0.15. Putative doublets were identified using the URD function 
NMFDoubletsDetermineCells with parameters frac.overlap.max = 0.03, frac.overlap.diff.max = 
0.1, module.expressed.thresh = 0.33 and were then removed. 
 
Choice of root and tips 
Branching transcriptional trajectories in the retina and hypothalamus were constructed using URD 
1.1.1 (Farrell 2018). Briefly, cells from the first stage of the time course (12 hpf) were selected as 
the ‘root’ or starting point for the tree. Terminal cell types comprised the clusters at 15 dpf from 
these tissues, with the exception of clusters that were clearly progenitor or precursors based on 
known gene expression (retina: 29, 39, 43). Additionally, in the retina, one cluster (96) was 
excluded because it did not seem that any related cell types had been recovered in previous 
stages. 
 
Construction of branching transcriptional trajectories 
A diffusion map was calculated using destiny 51,52, using 140 (retina) or 100 (hypothalamus) 
nearest neighbors (approximately the square root of the number of cells in the data), and with a 
globally-defined sigma of 14 (retina) or 8 (hypothalamus) — slightly smaller than the suggested 
sigma from destiny. Pseudotime was then computed using the simulated ‘flood’ procedure 
previously described 25, using the following parameters: n = 100, minimum.cells.flooded = 2. 
Biased random walks were performed to determine the cells visited from each terminal population 
in the data as previously described 25, using the following parameters: optimal.cells.forward = 40, 
max.cells.back = 80, n.per.tip = 50000, end.visits = 1. The branching tree was then constructed 
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using URD’s buildTree function with the following parameters: divergence.method = "ks" 
(hypothalamus) or divergence.method = "preference" (retina), save.all.breakpoint.info = TRUE, 
cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, p.thresh = 0.0001 
(hypothalamus) or , p.thresh = 0.01 (retina), and min.cells.per.segment = 10. The resulting trees 
were then evaluated using known marker genes and branch regulators. 
 
Finding genes that vary during differentiation 
Genes were selected for inclusion in gene cascades based on their differential expression relative 
to other cell types in the tissue. See the Supplementary Analysis for the full set of commands 
used. Within each tissue, cells were first compared in large populations that defined major cell 
types (retina: cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal 
cells, Muller glia, retinal pigmented epithelium; hypothalamus: prdx1+ neurons, pdyn+ neurons, 
GABAergic dlx+ neurons, nrgna+ neurons). Comparisons were performed pairwise, and genes 
were considered differential in a population if they were upregulated compared to at least 2 
(hypothalamus) or 3 (retina) other groups. Genes were considered differentially expressed based 
on their expression fold-change (retina: ≥1.32-fold change, hypothalamus: ≥ 1.41-fold change) 
and their performance as a precision-recall classifier for the two cell populations compared (≥ 1.1-
fold better than a random classifier). Additionally, the aucprTestAlongTree function from URD was 
used to select additional genes by performing pairwise comparisons, starting from a terminal cell 
type and comparing at each branchpoint along the way, back to the root 25. Genes were selected 
based on expression fold-change between branchpoints (hypothalamus: ≥1.74-fold upregulated; 
hypothalamus, populations with small cell numbers (GABAergic dlx+ cells): ≥1.51-fold 
upregulated; retina: ≥1.32-fold upregulated), their function as a precision-recall classifier between 
branchpoints (hypothalamus: ≥1.2-fold better than a random classifier; hypothalamus, 
populations with small cell numbers (GABAergic dlx+ cells): ≥1.15-fold better than a random 
classifier; retina: ≥1.1-fold better than a random classifier), their function as a precision recall 
classifier globally (i.e. between the entire trajectory leading to a cell type and the rest of the tissue): 
≥1.03-fold better than a random classifier, and their upregulation globally (i.e. between the entire 
trajectory leading to a cell type and the rest of the tissue): ≥1.07-fold upregulated. Mitochondrial, 
ribosomal, and tandem duplicated genes were excluded. Cells were ordered according to 
pseudotime, split into groups of at least 25 cells that differ at least 0.005 in pseudotime, and the 
mean expression was determined with a 5-group moving window. A spline curve was fit to the 
mean expression vs. pseudotime relationship of selected genes, using the smooth.spline function 
from R’s stats package, with the parameter spar = 0.5. Genes were then sorted according to their 
peak expression in pseudotime, normalized to their max expression observed in the tissue, and 
plotted on a heatmap. 
 
Analyzing progenitor populations 
To determine whether retinal progenitors mature transcriptionally over time, we looked for genes 
that were differentially expressed between young and old progenitors. We chose cells that 
occupied the same region of the URD tree from either early (24 / 36 hpf) or late (15 dpf) stages. 
We looked for genes that were differentially expressed in 15 dpf progenitors that: (1) were 1.1-
fold better as a precision-recall classifier than random, (2) changed ≥1.32-fold in expression, (3) 
were expressed in at least 20% of progenitors, (4) had a mean expression value ≥ 0.8, and (5) 
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were more differentially expressed than equally sized cell populations chosen at random at least 
99% of the time. 
 
To determine whether cells were found in progenitor or precursor states long-term, we first defined 
progenitor and precursor states by cells’ assignment in the URD tree, cross-referenced with the 
expression of progenitor / precursor markers. We then determined how many cells from different 
stages fell into each of these different states. 
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